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( 6 6 6 7  ARSTRACT 

Generalized equations a re  obtained for rad ia t ive  diff'usion i n  a non- 

grey gas and f o r  the energy jump at a w a l l .  By using the expression for 

the  energy jump a t  a wall, the  diffusion approximation f o r  radiat ion i n  

a gas i s  improved considerably, the range of v a l i d i t y  of the  approxima- 

t i o n  being extended t o  lower values of op t i ca l  thickness. 4 UTt((0rZ 
_- _- 

INTR3DUYK.ON 

Thermal rad ia t ion  i n  a gas i s  generally compl.ieated by the f a c t  

t h a t  the radiatim passing a given plane or iginates  at points throughout 

t he  gas. 

However i f  the gas i s  opt ica l ly  thick, the mean f r ee  path for  the radiant  

1 This leads t o  the  necessity of solving an i n t e g r a l  equation [11. 

energy may be s m a l l  compared with the overall  dimensfms of the system. 

Under these conditions the  radiation can be consider-d as a diffusion 

process, and the pyablsm reduces t3 one of solving a modified heat con- 

SluctTon equation [2:31-  

Although the diffuefon approximation works welL i n  the i n t e r i o r  of 

a gas,. i t .  i s  not: accurate neaT 'boundaries. Thus, except for  extremely 

l a r g e  optical. thicknesses, cnnsiderahle e r ro r  may be made i n  the calculat ion 

'Numbers i n  brackets designate references a t  end of paper. 
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a gas f o r  g-ven temperatures of t he  

boundlng w a l l s .  This i s  il.lu.strated i n  Fig. 2,  

I n  the present paper the diffusion equat-Loris f o r  the thermal radia- 

t i o n  i n  a non-grey gas a re  first generalfzed by including spacial_ deriv- 

a t ives  of higher ord.er than the f i r s t ,  

the  dif ,fusion approximation i s  extended by introducing higher order jump 

boundary conditions at the w a Y - l , ~ .  

boundary conditions, 'but inasmuch as hi,s resul . ts  fo r  la rge  op t i ca l  

thickness d i f f e r  , f r s m  those obtained from exact sol.u.ti.ons, it seems 

desirable  t o  reexamine the whole problem. 

the e f f e c t  of w a l . l s  on radiat ion.  

conditions, h i s  r e s u l t s  a re  similar t o  those 0:f: Shorin, i n  t h a t  they do 

not reduce t o  the correct  :form for l a rge  op t i ca l  thicknesses [ 6 ] .  

The range of app l i cab i l i t y  o f  

Shorfn [ 4 ]  has used first order jump 

Konakov [51 has a l so  considered 

Although he did not use jump boundary 

The f a c t  t h a t  the temperature i n  t-he gas next t o  a w a l l  should. d i f f e r  

from the w a l l .  temperature can be seen physicaUy a s  follows: 

f l u x  passing through a plane next to  a w a l l  i s  made up of flux cormfng 

from t.he w a l l  and. frsm gas which., on the  average,, i s  a rad ia t ion  mean 

f r ee  path away .from the w a l l . .  Thus t.he average t2mperature of the radia- 

t i o n  passi.ng t h r x g h .  the p.'!.ano next t o  the wall. w C . . l  l i e  between the wall 

t.emperature and th.2 temperahre a mean .free patk away from the w a l l .  

This e f f ec t  i s  s r i m i l a r  ta the  temperatwe jump ne.xt t,a a waL1 vhich occurs 

i n  heat t r ans fe r  'hy cmd.u.ct::i.m i .n  rmefied.  gases 

The rad ia t ive  

Thou.ghou.t the ana;lys:i.s the heat t r sns fe r  i s  assumed t o  be entlre1.y 

by rad.iat.isn, th.e e f fec ts  d? cond.u.ction be:f:ng assumed negl igible .  T h i s  
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would be an allowable assumption, f o r  instance,  at very high temperatures. 

When the e f f ec t s  of conduction m e  not  negl igi5le ,  the  conduction and 

rad ia t ion  a re  not s t r i c t l y  additive because of the  nonlinearity of the  

equations However, calculat ions made i n  reference 7 1 indicate  t h a t  

the error  made i n  assuming t h a t  they can be added l i e s  between 0 and. 

9 percent. 

I n  the next sect ion the equation f o r  the  radiant  heat t r ans fe r  i n  

a gas, as well  as for the  energy jump at a w a l l  w i l l  be derived. 

grey gas bounded by grey w a l l s  w i l l  be considered. 

coef f ic ien t  as assumed not t o  vary appreciably over a mean f r e e  path for 

the  rad ia t ion .  

A non- 

T'he absorption 

NOMENC LAX'FZ 

A a rea  (see Fige I) 

C ve loc i ty  of l i g h t  

spec i f i c  heat at constant pressure P C 

D d i m e  t e r  

dE, emission from de: a t  frequency Ir which passes through dA 

radiant  flux at frequency Y passing through dA from above a u 1  

( see  Fig. 1) 

radiant  flux a t  f requency 'd passing through dA from below /2 
( see  Fig,  1) 

t o t a l  emiisive pLlwer ,>f black w a l l ,  07: eb 

e t o t d  emissive power of' gas, cr? 4 g 

e,, spec t ra l  emissive p9wm of gas given ??y Pianck's d i s t r ibu t ion  

function, equation (14) 
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spectral  emissive power of black wall given by Planck's dis-bribution 

function, equation (14) 

Planck's constant, heat t ransfer  coeff ic ient  

defined by equation (20)  

Bo1  t zmann I s constant 

thickness of gas space 

heat source per u n i t  volume 

radiant  heat t r ans fe r  per u n i t  area 

radiant heat t ransfer  per uni t  area per u n i t  frequency increment 

radius 

absolute temperature 

time 

gas veloci ty  

coordinate defined by Fig. 1 measured i n  d i rec t ion  of gas flow 

coordinate defined by Fig. 1 

coordinate defined by Fig. 1 

w a l l  emissivity 

angles i n  spherical  coordinate system, cp 

R.2sseland mean absorption coefficient defined by equation (18) 

mean absorption coefficient defined by equ.ation (19)  

spectral  absorpt i m  coefficient 

defined by equ.ation (33:) 

defined by equation ( 4 )  

gas density 

Gamma f'unction 

defined i n  Fig. 1 
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0 Stefan-Boltzmann constant = 1.714X10'9 B-tu/(hr) ( f t 2 )  (R4) 

T volume 

w so l id  angle, steradians 

Sub scr ip ts :  

c refers t o  center l ine 

w r e fe r s  t o  waLl 

z i n  d i rec t ion  z 

0 defined i n  Fig. 1, a l s o  r e f e r s  to  gas at w a l l  

1 re fe r s  t o  inner radius, except i n  El 

2 refers t o  outer radius, except i n  E2 

BASIC EQUATIONS 

To obtain the generalized d i f f i s ion  equations f o r  the rad ia t ion  i n  

a gas, together with the jump boundary condition at a w a l l ,  consider the 

rad ia t ion  streaming through an area element 

a volume element of gas d T  a t  (x,y,z) (Fig. 1). The spec t ra l  emissive 

power 

ing eV i n  a three-dimensional Taylor s e r i e s  about (xo,yo,zo). This 

dA a t  point (xo,yo,zo) from 

eV at (x,y,z) can be related to conditions at  (xo,yo, z ) by expand- 

gives 

If w e  apply the binomial theorem twice t o  the f ac to r  i n  brackets w e  obtain 
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(1) 

The symbols a re  defined i n  the NOME?JCLATTJRE. The emission from dT at 

frequency V which passes through dA i s  

I n  order f o r  the exponential factor  i n  equation ( 2 )  t o  be applicable, 

t he  assumption must be made tha t  the spectral  absorption coeff ic ient  

i s  effect ively uniform over a mean f r ee  path f o r  the radiation. 

K~ 

The s o l i d  angle dw equals dA cos @/r2 and 

dT = r2 s in  9 dr dcp de 

We can wri te  equations (1) and ( 2 )  i n  spherical  coordinates with or ig in  

at  dA by s e t t i n g  

x - xD = r s i n  0 cos cp,  y - yo = r s i n  0 s i n  cp ,  z - zo = r cos 9 

From the preceeding equations, the t o t a l  radiant  f l u x  per u n i t  frequency 

increment passing through dA from above i s  



. 

cos 8 s i n  dr drp 

- 7 -  

1 
(n - V)!(TS - s ) ! s !  

8)n-v(r s i n  e s i n  cp)v-S(r s i n  e cos 9)" 

de 

where 

(4) 

and I? i s  the  Gamma function. 

I n  order t o  obtain the  radiat ion from below, we l e t  8 go from 

n/2 t o  n, instead of from 0 t o  n/2, and take t.he negative value 

the  r e su l t :  

The net  radiant  beat t ransfer  per uni t  area per un i t  frequency increment 

passing through dA i n  t he  direct,ion z i s  
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a v 2  - %1 
dA 

q . =  YZ 

CO n v  
1 

Similar expressions c a n b e  obtained for q and qyx. 
VY 

Next t he  energy jump a t  a grey w a l l  which i s  immediately below but  

not touching the  area dA will be obtained. A s  before, the  rad ia t ion  

passing through the  asea *om above i s  given by equation (3).  

coming f'rom the  wall and passing through 

emitted by the w a l l  and t h a t  ref lected from the  w a l l ,  the  l a t t e r  having 

been originally emitted by the gas. 

The energy 

dA i s  reade up of rad ia t ion  

Thus 

( 7 )  dEV2 = €en dA 3. (1 .- E)  dEVI 

where E i s  the w a l l  emissivity and e,& i s  the spec t ra l  emissive power 

for  a black w a l l .  Solving equation (7 )  for evbi 

Substi tut , ing equations ( 3 )  and ( 6 )  i n  (8) and renoving the term for 

ri=O from the s m a t i o n  give 
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where R(n,v,s) i s  again given by equation ( 4 ) .  Similar ly  i f  the  wall 

is  above ra ther  than below dA 

Equations ( 4 ) p  (6)? (9 )>  and (LO) give the  general expressions f o r  

the  heat flux i n  the gas and for the energy jumps at the w a l l s .  It 

should be noted that  the  expression for  the heat f l ux  i s  s t r i c t l y  accurate 

only for regions at l e a s t  a radiat ion mean f r e e  path away from the  w a l l s ,  

inasmuch as the  in tegra t ion  i n  equation (3)  w a s  car r ied  t o  i n f i n i t y .  

However, as is  done for  heat conduction i n  ra ref ied  gases, we use the  

equation throughout the  gas and account for  the e f f e c t s  of the w a l l s  by 

introducing jump boundary conditions. 

I n  the  remainder of the paper w e  w i l l  neglect terms i n  the s e r i e s  

of higher order than the  second. 

second der ivat ives  a re  re ta ined.)  F r m  equ.ations (4)  ( 6 )  ( 9 ) ,  and (10) 

(Terms containing zeror first, and 

we then obtain 
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for  a w d l  below the  

(: - evO - em = 

for a wall above the  

gas, and 

gas. The subscripts 

because t h a t  expression for the  heat flux 

It i s  correct t o  second order because the  

0 axe omitted i n  equation (11) 

i s  used throughout the  gas. 

t e rns  containing second deriva- 
2 

t i v e s  are zero. 

generally known as the Rosseland approximation. 

r i gh t  s ide of equation (12) or (13) w a s  obtained by Shorin [4]. 

h i s  results d i f f e r  f'rom those obtained here even when the  second degree 

terms are neglected, because he used an expressim other than equation ( U )  

for the  heat flux close t o  a w a l l .  

Equation (11) w a s  obtained by Rosseland [ 2 ]  and is  

The first term on the 

However, 

Equations (11) t o  (13) apply t o  a s ingle  frequency V. They can be 

integrated over all frequencies t o  obtain equations involving the t o t a l  

rad ia t ive  heat flux and the  t o t a l  emissive power. 

pc)wer ev can be wr i t ten  as a function of V and the  t o t &  emissive 

power 

The spec t ra l  errlissive 

eg = UT* by writ ing Flanck's d i s t r ibu t ion  function i n  the form 

(14) e-, - znhv3 
e2 exp jhvo L ' 4  k -1 €2 1/41 ~ 1 

c 

Thus consid-er et' i n  equations Ill) t.o (13) t o  be a function of V and 

eq, and apply the rnks of p a r t i d  d i f fe ren t ia t ion  of composite functions. 

Tf WP miilt,iply the equat icms 3;y dY and in tegra te  from 0 t o  w, we 

obtain 
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q z = - -  3Kr 

for  a w a l l  below the  gas, and 

for  a w a l l  above the  gas, where 

The der iva t ives  of ev with respect t o  e i n  these equations are obtained 

from equation ( 1 4 ) .  For a grey gas, K~ is  independent of V and equa- 

t i o n  ( 2 0 )  becomes 

g 
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For a non-grey gas it is, of c o u s e ,  necessary t a  know 

of V and eg i n  order t o  evaluate equations (18) t o  (20). The Rosseland 

mean absorption coef f ic ien t  Kr has been calculated f o r  high temperature 

K,, as a function 

air i n  reference 8. 

I n  the  following sect ions equations (15) t o  ( 1 7 )  w i l l  be used f o r  the  

so lu t ion  of a few i l l u s t r a t i v e  problems. 

ILLUSTRATrvE ExAMpLJ3S AND COMPARISON WITH MACT SOLUTIONS 

Stat ionary .absorbing gas between w a l l s .  - Consider first the radiant  

heat t r a n s f e r  i n  a s ta t ionary  gas bounded by two i n f i n i t e ,  plane, p a r a l l e l  

w a l l s  at horizontal  planes L and 2. For th i s  case q, i s  independent 

of z, the  d i r ec t ion  normal t o  the  w a l l s ,  so that equation (15) can be 

in tegra ted  t o  give 

or  

( 2 3 )  
- 3 KrL = 
q Z  4 

where L i s  the dist.a.nce be-kween the p l a t e s  and K, is assumed constant. ,  

F r m  zquations (15), (17)? and ( 2 2 )  the energy jumps a t  the w a l l s  a re  
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and 

Note t h a t  t he  second and higher order der ivat ives  i n  equations (16) 

and (17)  a re  0 for  t h i s  case. Adding equations (23) t o  (25), and taking 

the  reciprocal  of the r e s u l t  give 

where % has been replaced by i t s  equivalent, fl:. 

Equation (26) is  p lo t ted  aga ins t  op t i ca l  thickness KrL f o r  several  

values of w a l l  emissivity i n  Fig. 2 .  Also p lo t t ed  for comparison are  an 

exact so lu t ion  from reference 6, the usual d i f fus ion  approximation which 

neglects the energy jumps at the w a l l s  (eq, ( 2 3 ) ) $  and Shorin 's  r e s u l t  [ $ I .  
The improvement of the  diffusion approximation by introduction of 

jump boundary conditions i s  considerable, the agreement with the  exact 

so lu t ion  being within 5 percent for all. values of The agreement 

of t he  present analysis  with the exact solut ion is a l s o  considerably b e t t e r  

than t h a t  from reference 4, the  l a t t e r  giving values of heat f l ux  about 

25 percent too  low f o r  la rge  v d u e s  of 

t o  the  r e s u l t s  of reference 5. 

K ~ L .  

KrL. The saxe comment appl ies  

A s  the W E L L  exissTTwri.t,y decreases; the radiant  heat t r ans fe r  for a 

given temperature difference decreases. This fs because the heat t ransfer  

pn- L "I 9 giver? energr  5 1 ~ ~  ~t $.he w a l l  decreases as E decreases (eq. (24 ) ) .  

It i s  of i n t e r e s t  t h a t  equa t im ( 2 6 )  reduces t o  the correct  form fo r  

heat t r ans fe r  between w a l l s  with no absorbing gas when KrL = 0 .  
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Consider next the  case where the walls are  cy l indr ica l  and concentric 

r a the r  than plane. I n  this case the heat t r ans fe r  per un i t  a rea  q is  

inversely proportional t o  radius, and equation(15) can be integrated t o  

give 

where the subscr ipts  1 and 2 refer ,  respectively,  t o  the  inner and 

outer r a d i i .  

from equations (16)  and (17). 

obtained by s e t t i n g  r IJ (22 $. y2)'/' i n  equation (27) ,  d i f fe ren t ia t ing ,  

and s e t t i n g  y = 0. Thus 

The energy jumps a t  the inner and outer w a l l s  a r e  obtained 

The der ivat ives  i n  those equations a re  

and 

Addition of equations (28 )  t o  ( 3 6 )  and use of the  r e l a t i o n  

rl = L/[(r2/rl)  - iI3 where 

give 

L I s  the  radLal  distznce between the walls, 
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For small heat flux the  las t  term can be neglected. 

A p lo t  of the reciprocal  of equation (31) f o r  K,/K, = 1, s m a l l  

heat flux, and for vwious  values of radius  r a t i o  and w a l l  emissivity 

i s  given i n  Fig. 3. For /crL =: 0, the correct expression for 

q1/ k(T$l - 'I!$~~ i s  l/((l/~~) + (rl/r2)[(1/e2) - 11) i f  the r e f l ec t ion  

i s  diffuse.  Thus, equation (31) reduces t o  the correct expression f o r  

KrL = 0 only when rl/r2 = 1. This i s  perhaps not surprising because 

t h e  s e r i e s  i n  equations ( 6 ) ,  ( 9 ) >  and (10) were truncated a t  t e r m s  of 

order two. 

were zero, but  here they are a l l  non-zero. 

the range of values of f o r  which the  present approximation i s  

val id ,  curves for the  Monte Carlo s o h t i m  of Perlmutter and Howell 

For the case of the plane p l a t e s  the  higher-order der ivat ives  

I n  order t o  given an idea of 

K r L  

ana plo t ted  dashed i n  FiLg. 3.  Tt i s  evident t h a t  t h e  approxization i s  

good a t  ra ther  Low values of K ~ L  when r2/rl i s  not too la rge .  A s  

r2 / r i  

TaLUeS of KYL. However, i n  all cases the  improvement Over t h e  

increases,  the r?lzge cf i t s  appl iczbi l i ty  moves to higher 
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usual diffusion approximation i s  aonsidemble. 

w i t h  the  Monte Carlo solut ion indicates. t ha t  they could be extrapolated 

t o  lower vaLues of 

t he  curve for  the present r e s u l t s  and which i n t e r s e c t s  the known correct  

ordinate fo r  KrL = 0. 

Comparison of these r e s u l t s  

KrL by drawing a smooth curve which i s  tangent t o  

Absorbing gas with heat sources and flow. - Next a simplified version 

of t h e  rad ia t ion  t o  or from a gas containing heat sources and flowing 

between two p a r a l l e l  w a l l s  w i l l  be considered. 

out of a un i t  volume V - q can be equated t o  the  heat source within 

the  volume Q' 

The net r a t e  of heat flow 
3 

minus the  rate of change of enthalpy within the volume 
3 

D T / D t .  From equation (15), the heat flow Vector q i s  
cP 

- (4/3Kr)Ve , i f  we consider only radiant heat; t r ans fe r .  g 

balance b e c ome s 

Thus the  energy 

where the  propert ies  are assumed constant. 

be the  same as the heat conduction equation if w e  replace 

t h e  thermal conductivity and eg by the  temperature. For steady-state 

conditions and ve loc i t i e s  i n  the  x-direction only, t he  subs tan t ia l  deriva- 

t i v e  i n  the last  term becomes 

the  d i rec t ion  of motion, as i s  usually done for  heat conduction i n  moving 

f lu ids ,  equation ( 3 2 )  becomes 

Equation (32) w i l l ,  of cowse, 

4/3Kr by 

u d T / d x .  If we neglect heat t r ans fe r  i n  
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I n  order t o  simplif'y the  problem we consider the case where A i s  

independent of z and the  two w a l l s  m e  at  the same temperature. Then, 

i f  z = 0 

gives 

at the center of the channel, one in tegra t ion  of equation (33) 

Another in tegra t ion  gives 

3 K r A  e - e  = - 2  Z 
g gC 8 

or 

(35) 

where the  subscript  

r e f e r s  t o  the center of the channel, and L i s  the  width of the  channel. 

Evaluation of equations (15) and (34), a t  t he  w a l l  gives 

0 r e f e r s  t o  conditions i n  the gas at the w a l l ,  c 

L 

so that 

3 
16 

e o - e  

S W  
gc = - !crL 

(37) 

The energy jump at  the w a l l  i s  g ivenby equation (16) where the  deriva- 

t i v e s  at the w a l l  a re  abtained ICrm equations (35) and (37 ) .  Thds  
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A p lo t  of the  recr iprocal  of equation (40) i s  given i n  Fig. 4 f o r  

Kr/Ks = 1, small heat f l u x ,  and for several  values of E. Included f o r  

comparison a re  curves for the  Monte Carlo solut ion of Howell and 

PerLxutter [ 101 and the  usual dif.fusion approximation without jump 

boundary conditions (eq. (38) ) e 

diff 'usion so lu t ion  and t h e  Monte Carlo solut ion i s  reasonably good over 

the e n t i r e  range of values of 

The agreement between t h e  present modified 

K ~ L ,  t he  agreement, of couTses being b e s t  

f o r  the  higher values of 

the usual  d i f fus ion  approximation shows, as i n  the preceding cases, the 

considerable e f f ec t  of the  energy jump at the  w a l l .  

KrLe Comparison of these m r e s  with tha t  f o r  

Figure 4 can be used t o  estimate the  radiant  heat t r ans fe r  produced 

by in j ec t ing  smoke or pa r t i c l e s  i n to  the  gas stream. 

Fig. 4 can be wr i t ten  as h(T; - T,)/(Tt: - !Fa)> where the heat t r ans fe r  

coef f ic ien t  h 

w a l l  and center l ine temperatures. If su f f i c i en t  smoke is  in jec ted  i n t o  

the stream t o  produce a 

peratures  on the  order of 4,000' F, heat t r ans fe r  coef f ic ien ts  on the  

order of 500 Btu/(hr)(fY2)(%) might be obtained. 

t ha t  t h e  introduct ion of the  smoke would grea t ly  a f f ec t  t h e  pressure 

drop, so that t h i s  appears t o  be a possible way of obtaining very l a rge  

heat t r a n s f e r  cceff ic i r i l ts  i n  a gas without correspondingly l a rge  f r i c t i o n  

f ac to r s .  

The ordinate i n  

qw/(Yw - T,) is  based on the  difference between the 

K ~ L  of about 2, F igP  4 indtcates  that ,  f o r  tem- 

It would not be expected 

-7.P --.I- :An- -  - L .z- -..-A7 ---- LL- 
L I  w c  L U I I D L U C L  a L,Lluc, L & C . L L C L  LLLCLL? 2 C h a i X E l ,  equatiri7 (212) or (321) 

can be wr i t ten  i n  cylTndrical coordinates as 
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Solution of t h i s  equation gives 

The energy jwrp a t  the  w a l l  is obtained fYam equation (17) (qy) = - q,) 

and the  der ivat ives  at the w a l l  i n  tha t  equation a re  caJ-culated by se t t i ng  

r2 =r z2 4- y2 

t i a t i n g .  The f i n a l  equation is  

i n  equation (42) and l e t t i n g  y go t o  zero a f t e r  d i f f e ren i  

A p lo t  of the reciprocal of equation (43), together with the Monte Carlo 

solut ion of' reference 9? i s  plotted i n  H g .  5. 

the two solutions i s  indicated. 

Good agreement between 

For a gaseous sphere containing heat sources) we can wri te  equa- 

t i o n  (32) or (33) as  

and 

For this case we 0btai.n the derivatives i n  equation (17)  by se t t i ng  

r2 sf z2 $. y2 $. x2 i n  equation (45) and l e t t i n g  y and x go t o  zero 

a f t e r  d i f fe ren t ia t ing .  The f i n a l  equation for  the sphere is 
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Note t h e  s imi l a r i t y  between equations (40),  (43)9 and (46).  

A s  a f i n a l  example consider a radiat ing gas flowing i n  an annulus 

which i s  heated at  the  inner radius rl and cooled at t h e  outer one r2. 

Integrat ion of equation (41) between '1 and 1-2 and use of equations 
(16) and ( 1 7 )  give, f o r  t h i s  case, 

and 

where L i s  again the  

-- A'; 
q1 
- -  

difference between t h e  inner and outer r a d i i ,  and 

7\ 

instance,  be used to estimate the  heat t r ans fe r  from an arc  of radius 

rl t o  an zbmrbing gas flowing d o n g  it through a tube of radius r2. 

i s  defined by equation ( 3 3 )  Equations (47) and (48)  might, f o r  



- 21 - 

CONC"LTJ'DING IXEMARKS 

by using second-order jump boundary conditions at  w a l l s ,  the  range 

of va l id i ty  of the diffusion approximation i s  extended t o  comparatively 

low values of optical. thickness. 

gas between f l a t  surfacess the  method gives good r e s u l t s  f o r  all values 

of opt ica l  thickness. For concentric cy l indr ica l  surfaces good r e s u l t s  

are  obtained for  moderate and high values of op t ica l  thickness, but  the 

method breaks down before an optical. thickness of zero i s  reached. The 

r e s u l t s  improve as the  radius r a t i o  gets  closer t o  1. 

For radiant heat t ransfer  i n  a s ta t ionary 

For heat t ransfer  f r a m  p a r d l e l  p la tes  dr from R tube t o  a moving 

gas with heat sourcesg the  method gives reasonable r e s u l t s  for  a l l  

values of optic& thickness. The r e su l t s  f o r  t h i s  case indicate  t h a t  

very high heat transfer coeff ic ients  might be obtained by introducing 

smoke or pa r t i c l e s  i n t o  a gas flowing i n  a passage at high temperatures. 

The e f f ec t  of w a l l  emissivity, which i s  neglected i n  the usual. di f fusion 

approximation, i s  accounted fo r  i n  the present method. 

be applied t o  a non-grey gas i f  the spec t ra l  absorption coeff ic ient  of 

the gas i s  knmn as a funct710n of freqGency &id temperature. 

: 

The r e s u l t s  can 
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FIG'P-E Z ITLES 

Figure 1. - Sketch fer deriving diffusion equations. 

Figure 2. - Thermal rad ia t ion  between f ia t  surfaces  with intervening 

s ta t ionary gas. Solid curves calculated f r o m  equation ( 2 6 ) .  

Figure 3. - Thermal rad ia t ion  between concentric cy l indr ica l  surfaces w i t h  

intervening s ta t ionary  gaso 

for s m d l  heat flux and 

Solid curves c d c u l a t e d  from equation (31) 

K ~ / K ~  = 1. 

Figure 4. - Themal rad.iation f'rm channel w a l l s  t o  f l m i n g  gas w i t h  heat 

s(3urces. 

f l u x  and +/;cS = 1. 

Solid curves c d c u i a t e d  f r o m  equation (4iB) for s m a l l  heat 

Figure 5. - Thermal, rad ia t ion  from tube t o  flowing gas w i t h  heat sources. 

Solid curves calculated from equation (43)  for small heat flux and 

KJK, = 1. 



Fig.  1. Sketch f o r  deriving diffusion equations. 
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